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Earlier results [1--4] are developed in application to a certain special class of non-conservative mechanical systems in which the 
matrices of dissipative and non-conservative forces are singular. For this class of systems, necessary and sufficient conditions are 
formulated for reducing the initial matrix equation to a form that admits of direct application of the Kelvin-Chetayev theorems. 
An example is presented. © 2005 Elsevier Ltd. All rights reserved. 

A general investigation of the qualitative properties of non-conservative mechanical systems presents 
a rather complicated problem because of the unusual and not easily predicted influence of non- 
conservative positional forces on the stability of the system. In some cases, such forces actually promote 
expansion of the stable domain. Even a slight change in the system parameters, however, may mean 
that non-conservative forces will destroy stability. 

A technique has been proposed [14] to investigate mechanical systems with non-conservative forces, 
based on the use of the Lyapunov matrix to transform the initial equation. The transformation, which 
does not usually affect the stability properties of the linear part of the initial equation, is constructed 
in such a way that the transformed equation does not involve non-conservative positional structures at 
all. In the context of the technique it was assumed [1] that the matrices D, G, Fl and P (see Eq. (1.1) 
below) might be variable. 

As is well known, asymptotic stability in linear systems that contain non-conservative positional forces 
cannot be guaranteed unless dissipative forces are taken into account. It is therefore significant that 
the technique considered in the papers cited above is applicable only on condition that the matrices of 
the dissipative and non-conservative positional forces are non-singular. 

Another approach to a stability analysis of non-conservative systems has been considered, using 
Lyapunov's direct method without the above-mentioned structural transformation of the initial system; 
but then, too, the matrix of dissipative forces was also assumed to be non-singular [5]. 

Some recent publications have been devoted to the investigation of non-conservative systems in which 
the matrix of dissipative forces is singular. An example is a study of the stability of a body suspended 
on a string [6]. The matrix of dissipative forces in the equations of perturbed motion of such a system 
is singular, though the dissipation is nevertheless complete. 

On the basis of the technique developed in [1-4], a certain class of systems in which the matrices of 
dissipative and non-conservative forces are also singular has been considered.$ That study assumes that 
the matrices of dissipative and positional non-conservative forces, appearing as blocks in the structure 
of the initial matrices, satisfy a certain linear relation with a scalar constant. 

Below we will consider a more general class of mechanical systems with singular matrices of dissipative 
and non-conservative positional forces, which does not require satisfaction of the above-mentioned linear 
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relation. Rigorous conditions, on the basis of which stability can be investigated by direct application 
of the Kelvin-Chetayev theorems, will be obtained. 

1. I N I T I A L  E Q U A T I O N S  

Consider the matrix equation 

J±" + (D + HG)Yc + (H + P)x = 0 (1.1) 

where x = col(x1, . . . ,  x ~ )  is an unknown vector; J = Jr, D = D T, G = - G  T, l-I = [I T, P = _pr  are given 
constant 2m x 2m matrices, and H is a large positive scalar parameter, on which, generally speaking, 
the matrix H may depend. 

The matrix J is assumed to be positive-definite, and the matrix D, unlike the conditions assumed 
previously in [1-4], is assumed to be positive-semidefinite. 

Equation (1.1) describes the behaviour of a large number of mechanical systems subject to the action 
of dissipative, gyroscopic, potential, and properly non-conservative positional forces. In systems 
containing gyroscopes, J must be understood as the matrix of the total moments of inertia about the 
appropriate axes. 

Let us assume that rank/9 = m. Then, using elementary operations, we can express matrix equation 
(1.1) in such a way that the matrix D has the form [7] 

o: J[ °11 °rio o (1.2) 

We change to a new vector {(t), putting 

x(t) = Ll(t)~(t  ) (1.3) 

where the matrix Ml(t) is determined from the conditions 

D L ~ ( t ) = - P L I ( t ) ;  p=llP~all=.a=l,2, t>0; L l ( O ) = d i a g ( E , E  ) (1.4) 

where E is the rn × m identity matrix. 
Conditions (1.4) will be satisfied if 

Pl2 = P22 = O, Ll(t) = diag[L(t), L(t)] (1.5) 

where the m × rn matrix L(t) is determined from the condition 

L(t) = -D- l lPuL( t ) ,  t>0,  L (0 )=  E (1.6) 

Put 

V 1 = 2Jdiag[A,A] + D+ HG 

W t = Jdiag[A 2, A 2] + HGdiag[A, A] + H, -1 
A = -D11PIj 

(1.7) 

Then, using substitutions (1.3) and (1.6), we can reduce Eq. (1.1) to the form 

~( t )  + L - l l ( t ) J -1VIL l ( t )~ ( t )  + L - l l ( t ) J - I W i L l ( t ) ~ ( t )  = 0 (1.8) 

where the matrix Li(t) is assumed to be non-singular. If the commutativity conditions 

j - I v 1 L I ( t  ) = Ll(t)J-1Vl, j -1WILI(t  ) = L l ( t ) j - I w l  (1.9) 

are satisfied, Eq. (1.8) reduces to the form 

J ~ ( t )  + V l ~ ( t  ) + W l ~ ( t )  = 0, (1.1o) 

where the matrices a t, V1 and W1 are constant and defined by formulae (1.7). 
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If the matrix W1 turns out to be symmetric and the matrix V1 depends on the dissipative and gyroscopic 
forces, the Kelvin-Chetayev theorems are applicable to Eq, (1.10). It is therefore natural to formulate 
the problem of finding the necessary and sufficient conditions for Eqs (1.8) and (1.10) to be equivalent, 
in the sense that every solution of Eq. (1:8) is at the same time a solution of Eq. (1.10), and vice versa. 

2. THE CONDITION FOR EQS (1.8) AND (1.10) TO BE EQUIVALENT 

The solution of the Cauchy matrix problem (1.6) has the form 

,-~'1/2 " . . . . .  1/2 , ~ - 1 / 2  ~ r~-l/2 (2.1) L(t) = exp(At) = / J l l  exp(Fllt)O11, P l l  = - / - )11  /- '11"-'11 

provided that the matrix D a~ is positive-definite, so that the matrices D~/~ z and D~]/Z exist. If it is required 
that detPll ~ 0, then it can be shown, exactly as in [3], that the matrix L(t), and together with it the 
matrix La(t), ar e Lyapunov matrices. Hence transformation (1,3) does not affect the stability properties 
of Eq. (1.1). 

Theorem. Let J, D and H be arbitrary symmetric 2m x 2m matrices such that J and Dll are positive- 
definite. Let Pal be an arbitrary non-singular skew-symmetric m x m matrix, where m is even. Then 
Eqs (1.8) and (1.10) will be equivalent for any H > 0 if and only if the following conditions hold 

J IG£1(0 ) = / ~ I ( 0 ) j - I G ,  J - l I I £ 1 ( 0 )  = / ~ l ( 0 ) j - l [ I ,  
(2.2) 

J-~D£1(0) = [~l(O)J-1D, £1(0) = diag(a ,a)  

Proof. We will first show that Eqs (1.8) and (1.10) will be equivalent if and only if conditions (1.9) 
hold. Indeed, suppose conditions (1.9) are satisfied. Then, since the matrix Ll(t)  (t ___ 0) is non-singular, 
Eq. (1.8) is transformed into Eq. (1.10). Hence Eqs (1.8) and (1.10) are equivalent. 

The converse also holds. Let Eqs (1.8) and (1.10) be equivalent in the sense indicated. Fix an arbitrary 
time to > 0 and define 

~(to) = e k, ~(to) = O, e k = (8jk)~ ml, k = 1,2 . . . . .  2m (2.3) 

(6jk is the Kronecker delta). Then it follows from Eq. (1.10) that 

~(to ) = _ j - IWlek  (2.4) 

Since the solution of Eq. (1.10) with initial data (2.3) is at the same time a solution of Eq. (1.8), we 
have 

- JLt( to)J-IWlek + WlLl( to)e ~ = 0 

o r  

j - Iw~Ll( to)ek = Ll( to)J- lWlek,  Vt0>0, k = 1,2,. . . ,2m (2.5) 

which is the second condition of (1.9). 
The first condition is proved similarly. Instead of initial data (2.3) we must take 

~(t0) = 0, ~(t0) = e k, k = 1,2 ... . .  2m (2.6) 

We then obtain the first of conditions (1.9). Repeating the arguments employed in [3], it can be shown 
that conditions (1.9) are equivalent to the conditions 

J - l V i L l ( o )  = LI(0)J-1V1, J-1Wl£1(0) = /~1(0)J-1WI (2.7) 

Indeed, conditions (2.7) obviously follow from conditions (1.9). It then follows from (1.5) and (2.1) 
that the matrices J-1V 1 and J-1W 1 commute with the matrix diag[D~Pll, D~Pll] ,  and hence also with 
the matrix L(t), Vt >_ O. 

At the same time, conditions (2.7) for any H > 0 hold if and only if the commutativity conditions 
(2.2) hold. 
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Corollary. The matrix W1 will be symmetric for any H > 0 if and only if 

GLI(O)  =--LI(0)TG, J[Ll(0)]2 = [/~l(0)]2J (2.8) 

The proof becomes obvious if the difference W1 - W~ is written in the form 

W l - W r = J[LI(0)] 2 - [L~(0)r]2J + H { G L I ( O )  + LI(O)rG} (2.9) 

By virtue of the foregoing discussion, to solve problem (2.4) it is not necessary to make a special 
determination of the pseudo-inverse of the matrix D ÷ [8], since it is obtained directly in explicit form 

Pr II O + = Dll 0 (2.10) 
0 0 

It also follows from the proof of the theorem that the matrices G and II may be variable, agreeing 
with earlier results [11]. 

On the assumption that the scalar parameter H > 0 is sufficiently large and the matrix of gyroscopic 
forces is non-singular, the so-called precession equations, whose matrix representation is obtained from 
Eq. (1.1) by neglecting the term J2 on the left of the equation, are very useful in the applied theory of 
gyroscopes. One obtains an equation of the form 

( D + H G ) t i + ( H + P ) u  = 0 (2.11) 

Of course, the legitimacy of replacing Eq. (1.1) by Eq. (2.11) requires justification. It has been 
established that one obstacle encountered in changing to the precession equations is the presence of 
non-conservative positional structures in the initial equations. In that case an asymptotically stable 
solution obtained by using Eq. (2.11) may turn out to be unstable in the exact equations, because of 
the divergence of rapid nutational oscillations. In that situation, if the dissipative forces that are always 
present in a real system are ignored, it is not possible to achieve stability by any domination of gyroscopic 
forces, i.e. by any increase in the scalar parameter H. This will be taken into consideration below when 
we consider a version of the four-gyroscope gyro horizon with control of the radial-correction type. 

3. A F O U R - G Y R O S C O P E  GYRO H O R I Z O N  

As an example of the application of the above theory, we will investigate a mathematical model of a 
four-gyroscope gyro horizon, which differs in its control structure from previously considered systems 
of this kind [9]. 

The system consists of a platform mounted in gimbals horizontally stabilized by means of four identical 
gyroscopes whose housings have vertical axes. The gyroscopes are coupled two by two by anti- 
parallelograms which allow each pair of gyroscopes to rotate in opposite directions through the same 
angle in the plane of the platform. Each pair of gyroscopes is attached by a spring to the inner frame 
of the suspension. It is assumed that the centre of mass of the system lies below its geometrical centre. 

Unlike the systems considered in [9], two control systems, with operation of the radial-correction 
type, are provided. The controls apply two correcting torques: one torque, about the axis of the outer 
gimbal, is proportional to the angle through which one of the gyroscope pairs rotates about the vertical 
axes of their housings; the torque is applied about the axis of the housing of a gyroscope of the same 
pair, proportional to the angle through which the outer gimbal turns. 

The equations of motion of such a system, assuming that it is mounted on a moving base and taking 
the Earth's rotation into account, have the form 

Ja6t + bl(x + 2H8 + 2Holy + s i s  + Plo~ = -Plt)o~/g 

J2 ~ + b2~ - 2H6~ + 2HO)~ + c5 - s2o~ = 2HUcosq0sinq 

J2Y + 2H[3 + 2Hcoo~ + c~/ = -2H(Ucosq0sin~ + u/R)  
(3.1) 

J2~ - 2H't  + 2 H o 8  + PI~ = 0 
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where ~ and 13 are the angles of deviation of the platform from the plane of the horizon, and 7 and 8 
are the angles through which each gyroscope pair rotates about the vertical axes of their housings. The 
remaining notation is the same as in Eqs (3.1) of [3]. The following additional notation has been 
introduced: U is the angular velocity of the Earth's diurnal rotation, on the assumption that Earth is a 
sphere of radius R, q0 is the (geocentric) latitude of the location and ~ is the angle measured in the 
clockwise direction from the direction to the north (the course of the base). The vertical component 
Usinq0 of the angular velocity of the Earth's rotation is included in to. 

Allowance is made for the torques bld~ and b28 of small dissipative forces in the first two equations 
of system (3.1), which contain the non-conservative positional torques s18 and sza. In the other two 
equations, which do not contain non-conservative positional structures, dissipative forces are ignored. 

The homogeneous part of system (3.1) corresponds to the matrix equation (1.1) and the structures 
(1.2). Putting ~ = xl, 8 = x2, 7 = X3, ~ = "174 and introducing the vector x = col(x1, x2, x3, X4), w e  have, 
with reference to system (3.1) 

J = diag[Jp J2, J2, J3], D = diag[b l, b 2, 0, 0], Dr1 = diag[b l, b2], G = diag[S, S] 

P =  sdiag[S,[O]], Pt, = sS, S =  ]1 O1 1 
- 0 

F I = ]  2HtoET' 2HooE , T, = Pl m c r2= Ic ° I o  PI 

(3.2) 

s = (s t+sz)/2,  m = (s 1 - s2 ) / 2  

For these data 

I 

Ll(0) = diag(A,A), AI 0 -b-~ls 

I b-21s 0 
(3.3) 

The matrixA is determined in accordance with the expressions (1.5). 
Conditions (2.2) impose certain restrictions on the choice of the parameters of the system. Thus, using 

the first condition and noting formulae (3.2), we obtain 

bllb 2 = J1 /J2  = J 2 ] J  3 (3.4) 

Taking the second condition of (2.2) into consideration, as well as the notation in (3.2), we have the 
further constraints 

bl = b2, Jl = J2 = J3, Sl = s2' c = Pl (3.5) 

The third of conditions (2.2) is satisfied in this situation and entails no further constraints. 
Under conditions (3.4) and (3.5), in which we put bl = b2 = b, J1 = J2 = J3 = J, we obtain the following 

expression for the matrix W1 

~tE 

where E is the 2 x 2 identity matrix. 
Applying Sylvester's criterion to the symmetric matrix (3.6), we obtain a necessary and sufficient 

condition for it to be positive-definite 

b2c + 2Hb(s  - bo~) - Js  2 > 0 (3.7) 

which has the same structure as the second of conditions (3.8) in [3] if we put J = 2.d'. 
Note that on the assumption that the scalar parameter H > 0 is sufficiently large, we can apply the 

technique used in [4], comparing the norms of the appropriate matrices. Then, as shown in [4], one 
can derive conditions more general than (3.7), in particular, not requiring that Sl = s2 as in (3.5). 
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The matrix D of dissipative forces in Eqs (3.1) is singular. Hence the corresponding Rayleigh function 
2q~ = bl& 2 + b2 ~2 will not be positive-definite for all velocities 6t, 8, ~/, 1~. Nevertheless, the dissipation 
in Eqs (3.1) may be complete. 

Looking at the homogeneous part of system (3.1), we see that if 6~ = 8 = 0, i.e. if tx and ~ are constant, 
the quantities 15 and 7will also be constant, [3 = ") = 0. This means that the dissipative forces vanish at 
equilibrium positions. 

Let A denote the determinant of the positional forces in system (3.1). Computation gives 

A = (4H2to 2 - cPl)  2 + cPls ls  2 (3.8) 

If this determinant does not vanish, the dissipative forces will vanish only in the unperturbed motion, 
corresponding to equilibrium positions. This means that the dissipation is complete [6]. Then, if condition 
(3.7) is satisfied, so that the matrix W~ is positive-definite, the addition of arbitrary gyroscopic forces 
and forces with complete dissipation gives the system the property of asymptotic stability. 

If the determinant (3.8) turns out to be equal to zero, the system may not have the property of 
asymptotic stability. To demonstrate this, set Pl = 0, c = 0 in Eqs (3.1) for the case of a stationary base, 
when co - 0. This case corresponds to the absence of a pendulum effect in the system, when its centre 
of gravity coincides with the geometric centre of the suspension, and also the absence of springs through 
which the gyroscopes are attached to the inner gimbal. Under these conditions, system (3.1) splits into 
two independent systems. The equations for the coordinates 15 and 7 are then 

J ~ +  2H~ = M,  J3~-2H~/ = 0, M = - 2 H ( U c o s t p s i n v +  o/R ) (3.9) 

The homogeneous part of Eqs (3.9) corresponds to the initial equation (1.1) when only gyroscopic 
forces are present. 

If the determinant of the matrix of gyroscopic forces does not vanish (as happens in this case), the 
system turns out to be stable in velocities and coordinates, but not asymptotically. Even by adding 
dissipative forces in system (3.9), one can ensure asymptotic stability only in velocities, but not in 
coordinates [10]. 

If there is a constant torque M on the right of Eqs (3.8), we obtain an undesirable drift in the system, 
increasing linearly with time. Indeed, the solution of system (3.9) for zero initial data in the coordinates 
and velocities has the form 

M t  M 
15 = ~ + ~-H-~sinkt, 

J3M 
1 - coskt); 

7 = 4H2( 
2H k -  (3.1o) 

4J2J3  

The first of these expressions represents a systematic drift of the inner gimbal of the suspension, 
accompanied by undamped nutational oscillations at an angular frequency k, determined by the last 
formula of (3.10). The coordinate 7 experiences nutational oscillations at the same frequency, about 
an equilibrium position 7 = Y*, where 7* = J3M/(4H2), which is displaced from zero and very small in 
magnitude. 

The presence of a systematic drift of the inner gimbal also follows directly from Eqs (3.9), considered 
in the context of the precession theory, for which the inertial terms J27 and J31~ must be ignored in the 
equations specified. 

Another result is obtained if, when Pl = c = 0, one assumes that to ~: 0. For these conditions, by formula 
(3.8), we have A = 16H4to 4. System (3.1) no longer splits into two independent systems. The characteristic 
equation of the precession system obtained from (3.1) may be written in the form 

( 1 + £1£2)~, 4 + (m 1 + m2)~  3 + (2032 + mlm2)~, 2 + f02(ml + m2)K+ 0.) 4 = 0 
(3.11) 

E i ---- bi / (2H),  m i = s i / (2H);  i = 1,2 

Since the coefficients of this equation are positive, the single Hurwitz condition for the equation may 
be reduced to the form 

to2(S l + $2)2(SIS2 -- blb2to 2) > 0 (3.12) 

Condition (3.12) will hold if 
2 

tog:O,  s l s 2 > b l b 2 t o  (3.13) 
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When conditions (3.13) are satisfied, we obtain asymptotic stability in the precession equations. If we 
take sl = s2 = s, bl = b2 = b, the second of conditions (3.13) becomes s > bco, in agreement with 
inequality (3.7), in which, with reference to the case c = 0, we must also assume that co ~ 0. 

If the device is capable of reacting to the Earth's rotation, we must set co = Usin~p in the case of a 
base which is stationary with respect to the Earth. Then condition (3.12) is satisfied only if the second 
of conditions (3.13) is satisfied, except at the equator, when tp = 0. Otherwise, one can apply a forced 
rotation of the base at a given angular velocity. This measure has been applied in practice, for the purpose 
of increasing the precision of the gyroscopic device, and is described in the technical literature [11]. 

If co ~ 0, the last two equations of system (3.1) contain terms 2Hcot~ and 2Hco~ with the factor 2Hco, 
which in turn appears in the structure of the matrix H of conservative forces in (3.2). 

Therefore, rotation of the base at an angular velocity co promotes the appearance of conservative 
properties in the system as a whole. Under certain conditions, this will extend the region of stability of 
the device considered. 
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